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Abstract. Geophysical time series are sometimes sampled irregularly along the time axis. The situation is par-

ticularly frequent in palaeoclimatology. Yet, there is so far no general framework for handling continuous wavelet

transform when the time sampling is irregular.

Here we provide such a framework. To this end, we define the scalogram as the continuous-wavelet-transform-

equivalent of the extended Lomb-Scargle periodogram defined in part I of this study (Lenoir and Crucifix, 2017).5

The signal being analyzed is modeled as the sum of a locally periodic component in the time-frequency plane, a

polynomial trend, and a background noise. The mother wavelet adopted here is the Morlet wavelet classically used

in geophysical applications. The background noise model is a stationary Gaussian continuous autoregressive-moving-

average (CARMA) process, which is more general than the traditional Gaussian white and red noise processes. The

scalogram is smoothed by averaging over neighboring times in order to reduce its variance. The Shannon-Nyquist10

exclusion zone is on the other hand defined as the area corrupted by local aliasing issues. The local amplitude in

the time-frequency plane is then estimated with least-squares methods. We show that the squared amplitude and

the scalogram are approximately proportional. Based on this property, we define a new analysis tool: the weighted

smoothed scalogram, which we recommend for most analyses. The estimated signal amplitude also gives access to

band and ridge filtering. Finally, we design a test of significance for the weighted smoothed scalogram against the15

stationary Gaussian CARMA background noise, and provide algorithms for computing confidence levels, either an-

alytically or with Monte Carlo Markov Chain methods. All the analysis tools presented in this article are available

to the reader in the Python package WAVEPAL.

1 Introduction

The continuous wavelet transform (CWT) is widely used for the time-frequency analysis of geophysical time series,20

mainly through its scalogram, which is the squared modulus of the CWT. The CWT relies on an probing function,

called the mother wavelet. A common choice for the mother wavelet is the Morlet wavelet (Grossmann and Morlet,
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1984), which is well suited for the analysis of signals whose components have a time-varying frequency and/or

an amplitude. The scalogram is then often smoothed to reduce its variance, and significance testing against a

stationary Gaussian white or red noise is commonly applied. State of the art references in climate for the analysis

of regularly sampled time series include: (Torrence and Compo, 1998) which provides the bases for the subsequent

works, (Torrence and Webster, 1999), providing a smoothing method for the scalogram (which is a particular case5

of the wavelet coherency developed in there), and (Maraun and Kurths, 2004; Maraun et al., 2007), which provide

more reliable significance tests for the smoothed scalogram. A non-exhaustive list of the applications, in climatology,

of the scalogram of the CWT with the Morlet wavelet, include:

– Studies in climate and weather: Analysis of the El Niño Southern Oscillation in (Torrence and Compo, 1998),

analysis of the Artic oscillation in (Grinsted et al., 2004), or the analysis of daily precipitations in the Alps in10

(Schaefli et al., 2007).

– Studies in paleoclimate: Analysis of the astronomical forcing in (Berger et al., 1998), analysis of the Mid-

Pleistocene transition in (Elderfield et al., 2012), or the analysis of the equatorial Pacific thermocline over the

last eight glacial periods in (Regoli et al., 2015).

Most of these studies use the algorithms provided by the papers cited above or similar algorithms, and all them15

require the data to be regularly spaced. However, it may happen that the time series be intrinsically irregularly

sampled (this actually happens in some of the above examples) and it is then interpolated on a regularly spaced grid

in order to apply the algorithms of the CWT and its scalogram. But the interpolation procedure may seriously affect

the analysis with unpredictable consequences for the scientific interpretation, especially when performing significance

testing. This is illustrated in appendix F.20

A solution to this problem was addressed by Foster in a series of articles which share a common thread with our

two papers, in the sense that it first generalizes the Lomb-Scargle periodogram, based on orthognal projections

methods, in (Foster, 1996a, b), and then extends the formalism to the continuous wavelet transform, in (Foster,

1996c), allowing not to interpolate the time series. Foster formulas were motivated by the astronomical study of the

light curves of variable stars, which are unevenly sampled time series with large gaps. The methods presented in25

this article are influenced by Foster theories and it is shown in appendix E that most of its formulas can actually be

deduced from our general framework. The main limitations of Foster theory are the following (see appendix E for

detailed explanations): significance testing is only performed for the white noise background case, it only deals with

the unsmoothed scalogram, and the areas in the time-frequency plane corrupted by aliasing are underestimated. It

therefore suffers from a limited interest in geophysical applications1. Note that we have not found, in the literature,30

other rigorous methods tackling the problem of the estimation of the scalogram of irregularly sampled time series,

based on an extension of the Lomb-Scargle periodogram, and without interpolating (explicitly or implicitly) the time

series.
1An application of Foster formulas on paleoclimate data is found in (Witt and Schumann, 2005).
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In this article, we extend the analysis tools that we derived in the first part of this study (Lenoir and Crucifix, 2017)

in the case of the frequency analysis of irregularly sampled time series. They are based on a similar model, which

is a locally periodic component in the time-frequency plane, plus a polynomial trend, plus a stationary Gaussian

continuous autoregressive-moving-average (CARMA) process. Let us sketch the main points of the article. First, the

taper of the periodogram, derived in (Lenoir and Crucifix, 2017, Sect. 4.4), is chosen here to be a time-dependent5

Gaussian function with a variance depending on the scale, in order to define the Morlet wavelet-based scalogram.

This is detailed in Sect. 3.2 of this work. Second, the scalogram is smoothed in order to reduce its variance, by

averaging over neighboring times. To this end, we apply the same formula as in (Cohen and Walden, 2010). This is

explained in Sect. 3.4. Third, in Sect. 3.5, we estimate the amplitude of the locally periodic component, extending

the results obtained in Sect. 6 of paper I, and define, in Sect. 3.6 of this article, the weighted smoothed scalogram10

as the time-frequency analogue of the weighted WOSA periodogram defined in the first part of this study (Lenoir

and Crucifix, 2017). Fourth, we define in Sect. 3.8 the Shannon-Nyquist exclusion zone (SNEZ) to be the area

of the time-frequency plane which must be excluded from the analysis because of the local aliasing issues. Fifth,

we design a test of significance for the weighted smoothed scalogram, against the stationary Gaussian CARMA

background noise. This is based on the theory developed in Sect. 5 of paper I. More specifically, we define a null and15

alternative hypotheses, and estimate the distribution of the weighted smoothed scalogram under the null hypothesis,

either analytically, conserving the first moments of the distribution, or with Markov Chain Monte Carlo (MCMC)

methods. The latter approach allows to fully take into account the uncertainty on the parameters of the CARMA

background process. This is presented in Sect. 4. Sixth, we provide, in Sect. 5, formulas for filtering the signal in

a band delimited by two scales, or with the ridges, which are the lines going through the maxima of the estimated20

amplitude, in the time-frequency plane. Ridge filtering is based on state of the art algorithms provided in (Lilly and

Olhede, 2010) and (https://github.com/jonathanlilly/jLab). Seventh, we define in Sect. 6 the global scalogram as the

time-averaged weighted smoothed scalogram, resulting in a periodogram-like analysis tool with a frequency-varying

bandwidth. Eighth, we illustrate, in Sect. 7, the theory on the same paleoclimate data set as in our first article

(Lenoir and Crucifix, 2017). Finally, a Python package named WAVEPAL is available to the reader and is presented25

in Sect. 8. Before tackling the problem of irregularly sampled time series, the paper starts with the theory of the

CWT applied to continuous-time signals. This gives the bases for the subsequent developments.

Most of the mathematical concepts and notations are introduced in the first part of this study (Lenoir and Crucifix,

2017), and the reader is invited to revise them. Throughout this article, we will denote the equations of the preceding

paper by e.g. “Eq. (I,30)”, meaning ”the equation (30) of paper I”, and will refer to the paper itself by “paper I”.30
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2 The continuous wavelet transform of continuous-time processes

2.1 The continuous wavelet transform and its scalogram

Mathematical background about Fourier analysis is given in appendix A. The continuous wavelet transform (CWT)

of a function x ∈ L2(R) is

Sx(τ,a) = 〈ψτ,a |x〉, (1)5

where ψτ,a ∈ L2(R) is defined by

ψτ,a(t) = c(a)ψ
(

t− τ
a

)
. (2)

ψ is called the mother wavelet, τ ∈ R is the translation time, a ∈ R+
0 is the scale, and c(a)∼ am with m ∈Q. We can

write the CWT as a convolution product,

Sx(τ,a) = (ψ]
a ? x)(τ), (3)10

where

ψ]
a(t) = c(a)ψ

(−t
a

)
, (4)

in which · denotes the complex conjugate. From the convolution theorem,

Ŝx(ω,a) =
√

2πψ̂]
a(ω)x̂(ω) =

√
2πa ψ̂(aω), (5)

and Sx(τ,a) is then obtained by taking the inverse Fourier transform.15

|Sx(τ,a)|2 gives the local power in the time-scale plane, and is called the scalogram by analogy with the periodogram.

2.2 The wavelet power spectrum

The wavelet power spectrum (WPS) of a continuous-time stochastic process {x(t)}t∈R is defined by (see (Li and Oh,

2002) or (Maraun and Kurths, 2004)):

WPSx(τ,a) = E{|Sx(τ,a)|2}, (6)20

where the expectation is taken over the samples of the stochastic process. A simple example is the WPS of a

real-valued stationary white noise. Define {η(t)}t∈R satisfying the following covariance property:

E{η(t)η(t ′)}= σ2δ (t− t ′). (7)

Its WPS is then

WPSη(τ,a) = a c(a)2||ψ||2σ2. (8)25

4

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2017-27
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 4 July 2017
c© Author(s) 2017. CC BY 4.0 License.



2.3 The Morlet wavelet as the mother wavelet

In this article, we choose the mother wavelet ψ to be the Morlet wavelet (Grossmann and Morlet, 1984):

ψ(t) = π−1/4σ−1/2
0 [exp(iω0t)− exp(−ω2

0 σ2
0 /2)]exp(−t2/2σ2

0 ), (9)

This mother wavelet is a complex plane wave weighted by a Gaussian, to which is added a correction term to make

it admissible2, i.e. satisfying
∫ +∞
−∞ dtψ(t) = 0. This correction term is negligible3 for σ0ω0 ≥ 5.5. If this inequality is5

satisfied, and with the variable change a′ = a/ω0, the CWT with the Morlet wavelet is

S(τ,a′) = c(a′)
+∞∫

−∞

dt exp
(
− i(t− τ)

a′

)
exp
(
− (t− τ)2

2σ2
0 ω2

0 a′2

)
x(t), (10)

where c(a′)∼ (a′)m, m ∈Q, and holds all the multiplicative constants. Without loss of generality, we impose σ0 = 1,

and assume that

ω0 ≥ 5.5, (11)10

is fulfilled in the following of this article. Therefore,

S(τ,a) = c(a)
+∞∫

−∞

dt exp
(
− i(t− τ)

a

)
exp
(
− (t− τ)2

2ω2
0 a2

)
x(t) = (ψ]

a ? x)(τ), (12)

where

ψ]
a(t) = c(a)exp(it/a)exp(−t2/2ω2

0 a2). (13)

Under this form, interpreting Eq. (12) is straightforward: the CWT is the inner product between the signal x and a15

Gaussian wave packet centered in τ = t, of period 2πa, and with a numerical support4 of length 6ω0a. As the scale

increases (resp. decreases), the support becomes wider (resp. narrower).

2.4 On the parameter c(a)

There are two common choices for c(a) (Maraun and Kurths, 2004, Sect. 3)). The first one is c(a) proportional to

1/
√

a,20

c(a)∼ 1√
a
, (14)

and gives a constant L2-norm for ψτ,a, namely ||ψτ,a|| = ||ψ||. This implies that the wavelet power spectrum of a

white noise is flat, as we can see in Eq. (8). The second choice is

c(a)∼ 1
a
, (15)

2The admissibility criteria is required for ψ to be a wavelet (Holschneider, 1995, p. 5).
3We have exp(−(5.5)2) = 7.288.10−14 and exp(−(5.5)2/2) = 2.700.10−07.
4The length of the support of the Gaussian may be approximated by six times its standard deviation.
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and gives the same maximal power for sines of the same amplitude and with different frequencies. Indeed, from the

Fourier transform of ψ]
a,

ψ̂]
a(ω) = c(a)aω0 exp

(
−ω2

0 (ωa−1)2

2

)
, (16)

and applying Eq. (5), we must require c(a)a to be constant to have the maxima of the scalogram of a sum sine waves

(all with the same amplitude and different frequencies) invariant with the scale.5

2.5 The parameter ω0 and the time-frequency resolution

Parameter ω0 controls the time-frequency resolution, as it can be seen from the standard deviations of the Gaussian

weights in ψ]
a, Eq. (13), and in its Fourier transform, Eq. (16). The standard deviations are equal to ω0a and 1/ω0a

respectively. Consequently, for a fixed scale, increasing (resp. decreasing) the value of ω0 will generate a CWT

with a better (resp. worse) frequency resolution and a worse (resp. better) time resolution. This property is of10

primary importance for the applications to time series, as illustrated in Sect. 7. Note that, for any time-frequency

transform, there is always a trade-off between time and frequency localization. This property is often compared to

the Heisenberg uncertainty principle. The Morlet wavelet exhibits the best trade-off, thanks to its Gaussian shape.

We provide further details on this topic in appendix B.

2.6 Scale to period conversion15

The Morlet wavelet is often used to detect the periodicities in a signal, and it is therefore suitable to convert scales a

into periods T (Meyers et al., 1993). In practice, take a signal x(t) = Aexp(iωt) = Aexp(i2πt/T ). Its scalogram writes

|S(τ,a)|2 = 2πAc(a)2ω2
0 a2 exp(−ω2

0 (ωa−1)2), (17)

and is independent of τ. Scale to period conversion is performed with the value of the scale for which |S(τ,a)|2 is20

maximum (as a function of a). We find:

T =





2πa if c(a)∼ 1/a,

4πω0a
ω0+
√

ω2
0 +2

if c(a)∼ 1/
√

a.
(18)

For a fixed scale, and while ω0 ≥ 5.5, difference between both never exceeds 2 %.

2.7 Reconstruction with the amplitude ridges

Reconstruction of a signal can be performed with the CWT along the amplitude ridges5 (Carmona et al., 1997), which25

are the lines going through the maxima of the scalogram. Indeed, take the signal x(t) = Aexp(iωt) and c(a) ∼ 1/a.
5There also exist the phase ridges, defined in (Delprat et al., 1992), but we consider only the amplitude ridges in this study since they

are easier to generalize to irregularly time series. A comparison of both the amplitude and phase ridges is found in (Lilly and Olhede,

2010).
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Its scalogram is maximum at a = 1/ω (from Eq. (17)) and we can therefore easily recover the amplitude A at each

time τ, going through the ridge a(τ) = 1/ω in the scalogram, on which we have |S(τ,1/ω)| = αA ∀τ, where α ∈ R

is a multiplicative constant. Jointly with the amplitude, the full signal x(t) can be exactly recovered from the CWT

along the ridge.

This can be extended to signals with slowly varying amplitude and phase, see (Delprat et al., 1992) and (Carmona5

et al., 1997), namely,

x(t) = A(t)exp(iφ(t)), s.t.
∣∣∣∣
dφ
dt

∣∣∣∣�
∣∣∣∣

1
A

dA
dt

∣∣∣∣ , (19)

for which the CWT taken along the ridge, i.e. at the maxima of its modulus, can approximately reconstruct x(t). The

inequality in Eq. (19), called asymptoticity condition, means that the instantaneous frequency inside the wave packet

must be much smaller than the frequency of the amplitude of the wave packet. The analysis can be further extended10

to a sum of asymptotic signals plus noise, and detected by multiple ridges (Carmona et al., 1999). When considering

a real signal like x(t) = A(t)cos(φ(t)), we have to work with its analytic counterpart, which is built from the Fourier

transform of x, x̂, for which we impose x̂(ω < 0) = 0, and then take the inverse Fourier transform. Analyticity ensures

that the phase and amplitude of a signal are uniquely determined. See (Lilly and Olhede, 2010) and the references

therein for more details. State of the art algorithms for ridge detection are developed in (Lilly and Olhede, 2010)15

and are available for use in the package jLab (https://github.com/jonathanlilly/jLab), in which the ridge-finding

algorithm is general enough to be applied to various mother wavelets, like the Morlet wavelet.

2.8 Writing the scalogram under the formalism of orthogonal projections

Finally, we mention that the scalogram can be written under the formalism of orthonormal projections. Indeed,

defining20

yτ,a(t) =
π−1/4
√

ω0a
exp
(

i(t− τ)
a

)
exp
(
− (t− τ)2

2ω2
0 a2

)
, (20)

which has a unit norm, the scalogram can be formulated as

|S(τ,a)|2 = γ(a)|〈yτ,a |x〉|2 = γ(a)|| |yτ,a〉〈yτ,a|
〈yτ,a |yτ,a 〉

|x〉||2, (21)

where γ(a) = α (α ∈ R) if c(a)∼ 1/
√

a, or γ(a)∼ 1/a if c(a)∼ 1/a.
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3 The continuous wavelet transform of irregularly sampled time series

3.1 The model for the data

We consider the same model as in paper I:

|X〉= |Trend〉+ Eτ,a cos(ω|t〉+ φτ,a)+ |Noise〉

= |Trend〉+ Aτ,a|cω〉+ Bτ,a|sω〉+ |Noise〉, (22)5

where |X〉= [X1, ...,XN ]′ and is real, |t〉= [t1, ..., tN ]′, Aτ,a = Eτ,a cos(φτ,a), Bτ,a =−Eτ,a sin(φτ,a), E2
τ,a = A2

τ,a +B2
τ,a, |cω〉=

[cos(ωt1), ...,cos(ωtN)]′ and |sω〉 = [sin(ωt1), ...,sin(ωtN)]′. We have added subscripts (τ,a) since all the subsequent

analyses will be done in the time-scale plane. The trend is a polynomial of degree m,

|Trend〉=
m

∑
k=0

γk|tk〉, (23)

and the background noise term, |Noise〉, is a zero-mean stationary Gaussian CARMA process sampled at the times10

of |t〉, as defined in Sect. 3.2 of paper I.

3.2 The scalogram

When applying the CWT to finite discrete time series, a choice for the discretization must be made. In the influential

paper (Torrence and Compo, 1998), which deals with regularly sampled time series, the expression under the form of

a convolution product in the Fourier space, Eq. (5), is conserved, and computed with the discrete Fourier transform15

(DFT) of the data. The CWT is then the inverse DFT of the convolution product. Unfortunately, we cannot extend

the convolution theorem6 to irregularly spaced time series and we cannot therefore follow the same computational

procedure as in (Torrence and Compo, 1998). Alternatively, we can conserve the squared norm of the orthogonal

projection, Eq. (21). The advantage of such a formalism is that it can be applied to irregularly sampled time series, as

shown in paper I. Similarly to paper I, we work with cosines and sines instead of working with complex exponentials.20

A very little difference is observed between both choices. Based on the results of Sect. 2.8, our Morlet wavelet

scalogram for irregularly sampled time series is therefore

||Psp{Gτ,acτ,a,Gτ,asτ,a}|X〉||2, (24)

where Gτ,a is a diagonal matrix with diagonal elements

Giiτ,a = exp
(
− (ti− τ)2

2ω2
0 a2

)
∀i ∈ {1, ...,N}, (25)25

and

|cτ,a〉= cos((|t〉− τ)/a), |sτ,a〉= sin((|t〉− τ)/a), (26)
6The convolution theorem for continuous-time functions is given in appendix A, and its counterpart for regularly sampled time series

is given in (Mallat, 2009, p. 74).
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Figure 1. Comparison of the scalograms (with ω0 = 15) of regularly sampled time series, computed with WAVEPAL (left) or with

the classical approach, based on (Torrence and Compo, 1998), (Maraun and Kurths, 2004) or (Cohen and Walden, 2010) (right). The

time series is the NINO3 anomalies (https://www.esrl.noaa.gov/psd/gcos wgsp/Timeseries/Nino3/). The analytical confidence levels,

against a red noise background, are also drawn. The two lateral shaded areas are the half-cones of influence (see Sect. 3.7), and the

bottom shaded area is the refinement of the Shannon-Nyquist exclusion zone (defined in Sect. 3.10). The bounds of the color scale are

the extrema of the scalogram over the non-shaded area. Technical details about the computation of the scalogram and its confidence

levels are given in Sect. 3 and 4. We see that the two scalograms are visually identical, except in the half-cones of influence where small

discrepancies can occur.

are vectors of length N. We can impose τ = 0 into the cosine and sine terms, since

sp{Gτ,acτ,a,Gτ,asτ,a} is invariant with respect to the variable τ appearing in the cosine and sine, and the scalogram

becomes

||Psp{Gτ,aca,Gτ,asa}|X〉||2. (27)

In the following, the notations |Gτ,aca〉 or Gτ,a|ca〉 refer to the same vector. Our wavelet scalogram is similar to the5

tapered periodogram defined in Sect. 4.4 of paper I, and its properties and generalizations will therefore be similar

as well. In particular, variables a and τ are considered as continuous variables, similarly to the continuous frequency

variable of paper I.

When the time series is regularly sampled, the scalogram, given by Eq. (27), is extremely close to what is obtained

with the traditional approach based on the convolution theorem, e.g. in (Torrence and Compo, 1998), (Maraun10

and Kurths, 2004) or (Cohen and Walden, 2010). This is illustrated in Fig. 1. Note that Eq. (27) reduces to the

Lomb-Scargle periodogram, defined in Eq. (I,36), if the weight G is set to unity.

Similarly to the Lomb-Scargle periodogram, we rescale |Gτ,aca〉 and |Gτ,asa〉 such that they are orthonormal. This
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can be done by defining

|c]
a〉=

cos(|t〉/a−βτ,a)√
ΣN

i=1G2
iiτ,a

cos2(ti/a−βτ,a)
, |s]

a〉=
sin(|t〉/a−βτ,a)√

ΣN
i=1G2

iiτ,a
sin2(ti/a−βτ,a)

, (28)

where βτ,a is the solution of

tan(2βτ,a) =
ΣN

i=1G2
iiτ,a

sin(2ti/a)

ΣN
i=1G2

iiτ,a
cos(2ti/a)

. (29)

The scalogram is then5

||Psp{Gτ,aca,Gτ,asa}|X〉||2 = 〈Gτ,ac]
a |X 〉2 + 〈Gτ,as]

a |X 〉2. (30)

3.3 Scalogram and trend

Analogously to Sect. 4.3 of paper I, we extend the scalogram to take into account the presence of a polynomial trend

of degree m in the data. Indeed, the scalogram defined in Sect. 3.2 applies well to data which can be modeled as

|X〉 = Aτ,a|cω〉+ Bτ,a|sω〉+ |Noise〉. If we want to work with the full model, Eq. (22), holding a polynomial trend of10

degree m, we define a new scalogram as

||(Psp{t0,t1,...,tm,Gτ,aca,Gτ,asa}−Psp{t0,t1,...,tm})|X〉||2, (31)

which is invariant with respect to the parameters of the trend. This is the analogue of Eq. (I,51).

3.4 Smoothing the scalogram

The scalogram suffers from the same inconsistency issue as the periodogram, in the sense that it remains very noisy15

whatever the number of data points we have at our disposal7. Smoothing techniques must therefore be applied, and

we proceed like in paper I, extending the formulas used with regularly sampled time series. Note that the disadvan-

tage of any smoothing procedure is that the resolution (in time, frequency or both, depending on the smoothing

choice) is reduced. Consequently, there is always a trade-off between variance reduction and resolution.

Smoothing is traditionally performed by averaging the scalogram over neighboring points in the time-scale plane,20

either by averaging over times followed by averaging over scales (Torrence and Webster, 1999), (Grinsted et al.,

2004), or simply by averaging over time (Cohen and Walden, 2010). In this work, we apply the latter technique be-

cause, even for very simple signals like |X〉= sin(ω|t〉), the correlations in the scalogram between neighboring scales,

for a fixed time, are highly irregular when the time series is irregularly sampled, unlike the correlations between

neighboring times, for a fixed scale, which are drived by the Gaussian shape of the wave packets |Gτ,aca〉 and |Gτ,asa〉.25

Smoothing over time must be carried out in accordance with the length of the support of the wave packets, which
7The scalogram often looks smooth because neighboring points in the time-frequency plane are strongly correlated, but it nevertheless

remains inconsistent. See the discussion in (Maraun and Kurths, 2004, Sect. 4.2).
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is proportional to the scale and to parameter ω0 (Eq. (25)). This choice also implies that the number of oscillations

over which smoothing is performed is constant throughout the time-scale plane. This results from Eq. (26).

We adopt here the smoothing procedure of (Cohen and Walden, 2010) for which they derived analytical asymp-

totic results in the case of regularly sampled time series. The averaging window is a square window with a length

proportional to the scale. Our smoothed scalogram is5

||Psmoothed(τ,a)|X〉||2 =
1

2γω0a

τ+γω0a∫

τ−γω0a

dτ ′||(Psp{t0,t1,...,tm,Gτ ′,aca,Gτ ′,asa}−Psp{t0,t1,...,tm})|X〉||2, (32)

in which γ is called the smoothing coefficient. Appendix D provides further details on the practical implementation

of the bounds of integration.

3.5 The amplitude scalogram

3.5.1 Definition10

We want to estimate the amplitude Eτ,a =
√

A2
τ,a + B2

τ,a of our model, Eq. (22), at a given point (τ,a) of the time-scale

plane. The estimation of E2
τ,a is called the amplitude scalogram and is denoted by Ê2

τ,a. We start with a trendless

signal and derive an approximate proportionality between the amplitude scalogram and the scalogram.

3.5.2 Trendless signal

Formula (I,111) is applied with the left-hand side term changed to encompass wavelet formalism. Â and B̂ are15

determined by projecting the data onto the tapered cosine and sine:

Psp{Gτ,aca,Gτ,asa}|X〉= Â|cω〉+ B̂|sω〉= Vω2 |Φ̂〉, (33)

where the taper Gτ,a is defined in Eq. (25),

Vω2 =


 |cω〉 |sω〉


 , and |Φ̂〉=


 Â

B̂


 . (34)

Conversion from the angular frequency ω to the scale a is performed with the formula ω = 1/a (justification is given20

in Sect. 3.9). Using the same development as in Sect. 6.2.2 of paper I, we obtain

|Φ̂τ,a〉= (V ′a2
Gτ,aVa2)−1V ′a2

Gτ,a|X〉. (35)

The amplitude scalogram is then

Ê2
τ,a = || |Φ̂τ,a〉||2. (36)

11

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2017-27
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 4 July 2017
c© Author(s) 2017. CC BY 4.0 License.



The approximations made in Sect. 6.2.2 of paper I are valid in this work, and applying Eq. (I,120) to our case gives

an approximate proportionality between the scalogram and the amplitude scalogram, namely

Ê2
τ,a ≈

2tr(G2
τ,a)

tr(Gτ,a)2 ||Psp{Gτ,aca,Gτ,asa}|X〉||2. (37)

Let us compare this equation with its continuous counterpart, Eq. (21), in which the weight must be γ(a)∼ 1/a to

get an estimation of the local squared amplitude, as explained in Sect. 2.4. The comparison is made by analyzing5

the weight of the right-hand side term of Eq. (37) in the continuous limit:

1
∆t

2tr(G2
τ,a)

tr(Gτ,a)2 −→
2
∫ +∞
−∞ dt exp

(
− (t−τ)2

ω2
0 a2

)

(∫ +∞
−∞ dt exp

(
− (t−τ)2

2ω2
0 a2

))2 =
√

2
ω0a

, (38)

where ∆t is the average time step. This is proportional to 1/a and it is therefore consistent with the continuous case.

3.5.3 Signal with a trend

Formula (I,121) is applied with the left-hand side term changed to encompass wavelet formalism:10

Psp{t0,t1,...,tm,Gτ,aca,Gτ,asa}|X〉=
m

∑
k=0

γ̂k|tk〉+ Â|cω〉+ B̂|sω〉= Vωm+3 |Φ̂〉, (39)

where

Vωm+3 =


 |t0〉 . . . |tm〉 |cω〉 |sω〉


 , and |Φ̂〉=




γ̂0
...

γ̂m

Â

B̂




. (40)

Conversion from the angular frequency ω to the scale a is performed with the formula ω = 1/a (justification is given

in Sect. 3.9). Using the same development as in Sect. 6.3 of paper I, we obtain15

|Φ̂τ,a〉= (W ′τ,am+3
Vam+3)−1W ′τ,am+3

|X〉, (41)

where Wτ,am+3 is identical to Vam+3 except in the last two columns, where the cosine and sine are tapered by Gτ,a.

This gives

Âτ,a = Φ̂τ,a(m + 2), B̂τ,a = Φ̂τ,a(m + 3), (42)

where Φ̂τ,a(m + 2) and Φ̂τ,a(m + 3) are the two last components of vector |Φ̂τ,a〉. The amplitude scalogram is then20

Ê2
τ,a = Â2

τ,a + B̂2
τ,a (43)
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3.5.4 With smoothing

Like in paper I, estimating the amplitude is more robust against noise when a smoothing procedure is performed.

We apply to the squared amplitude, Eq. (43), the same kind of smoothing as for the scalogram, see Eq. (32), giving

Ê2
τ,a =

1
2γω0a

τ+γω0a∫

τ−γω0a

dτ ′(Φ̂τ,a(m + 2)2 + Φ̂τ,a(m + 3)2). (44)

Appendix D provides further details on the practical implementation of the bounds of integration.5

3.6 The weighted smoothed scalogram

The weighted smoothed scalogram is the analogue of the weighted WOSA periodogram, defined in Sect. 7 of paper

I, and its objectives are the same, i.e. to keep the advantages of both the amplitude scalogram and the scalogram,

namely:

– Provide an estimation of the squared amplitude of a signal, locally in the time-frequency plane, by weighting10

the scalogram like in Eq. (37).

– Conserve the advantage of the formalism of orthogonal projections, in order to avoid the matrix inversions for

the computation of the amplitude scalogram. See e.g. Eq. (44), relying on Eq. (41) which requires a matrix

inversion.

The last item is useful for building confidence levels when performing a test of significance (see Sect. 4). The15

disadvantage of weighting the smoothed scalogram is that it does not provide anymore a flat pseudo-wavelet spectrum

for a white noise signal (see Sect. 4.2), analogously to its frequency counterpart (see Sect. 7 of paper I). The weighted

smoothed scalogram is derived from Eq. (32), in which the integrand is weighted by the right-hand side weight of

Eq. (37), namely,

||Psmoothed(τ,a)|X〉||2 =
1

2γω0a

τ+γω0a∫

τ−γω0a

dτ ′
2tr(G2

τ ′,a)

tr(Gτ ′,a)2 ||(Psp{t0,t1,...,tm,Gτ ′,aca,Gτ ′,asa}−Psp{t0,t1,...,tm})|X〉||2 (45)20

Appendix D provides further details on the practical implementation of the bounds of integration. We recommend

the use of the weighted smoothed scalogram in most time-frequency analyses under irregular sampling.

3.7 Cone of influence

When the wave packets |Gτ,aca〉 and |Gτ,asa〉 intersect the borders of the time series, a part of their support can stand

after the last point of the time series, or before the first point of the time series. Consequently, one has to remove25

two half-cones from the area under analysis. From Eq. (25), the support of the wave packets is approximately equal

to 2βω0a, so that the excluded areas are given by

{τ,a} s.t. |τ− t1| ≤ βω0a and |τ− tN | ≤ βω0a, (46)
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with β = 3 (conservative choice) or β =
√

2 (choice in (Torrence and Compo, 1998)). We recommend the conservative

choice. When smoothing is performed, Eq. (46) becomes

{τ,a} s.t. |τ− t1| ≤ (β + γ)ω0a and |τ− tN | ≤ (β + γ)ω0a, (47)

where γ is controlling the smoothing length, see Eq. (32), (44) and (45). This has another implication: the maximal

scale available by the analysis is5

amax =
tN− t1

2(β + γ)ω0
. (48)

3.8 Aliasing and Shannon-Nyquist exclusion zone (SNEZ)

When probing the irregularly sampled time series with the wavelet packet, it may happen that the period of the

oscillation inside the packet, 2πa, is too low compared to the local time step in the time series, therefore causing

aliasing issues according to the Shannon-Nyquist theorem, locally in the time-scale plane. As stated in paper I, this10

issue also happens with the WOSA periodogram. We adapt formulas (I,66), (I,67) and (I,68) and define the local

time step by

∆tτ,a = max{∆tGτ,a ,∆tHτ,a}, (49)

where

∆tGτ,a =
∑N

k=1 Gτ,ak,k ∆tck

tr(Gτ,a)
, ∆tHτ,a =

∑N−1
k=1 Hτ,ak,k ∆tk

tr(Hτ,a)
, (50)15

∆tk = tk+1− tk, ∆tck =
tk+1− tk−1

2
∀k ∈ {2, ...N−1}, ∆tc1 = t2− t1, ∆tcN = tN− tN−1, (51)

and

Hτ,a = diagonal matrix with Hτ,ak,k = exp


−

(
tk+tk+1

2 − τ
)2

2ω2
0 a2


 , k ∈ {1, ...,N−1}. (52)

We then apply the Shannon-Nyquist theorem to this local time step, namely20

Compute the scalogram at (τ,a) if a≥ aSNEZ(τ), (53)

where

aSNEZ(τ) is the largest solution of a =
∆tτ,a

π
. (54)

We call Shannon-Nyquist exclusion zone (SNEZ) the area in the scalogram that does not satisfy Eq. (53) and which

is therefore delimited by aSNEZ. Note that matrix Hτ,a is similar to matrix Gτ,a, defined in Eq. (25), but with elements25
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Figure 2. (a) The time series |X〉 = sin(2π|t〉/0.01), and (b) its time step. The time vector |t〉 is taken from a real paleoclimate time

series (Giosan, 2017)

taken at (tk + tk+1)/2 instead of tk. Quantity ∆tτ,a is equal to the maximum between the average weighted time step

and the average weighted central time step.

We now justify formula (49) with an example. Consider the function X(t) = sin(2πt/0.01), sampled on an irregular

grid. This is drawn on Fig. 2a. The time step is represented in Fig. 2b. These two figures show that the time series

exhibits intervals where it is more or less regularly sampled, separated by large gaps. The weighted (unsmoothed)5

scalogram is drawn on Fig. 3a. We remind that the weighted scalogram is supposed to estimate the local squared

amplitude in the time-frequency plane. Since X(t) has an amplitude equal to 1, we expect that the maximal power of

the scalogram be equal to 1, along a scale corresponding to the period of x, for all τ. Because of the large gaps in the

time series, extended regions corrupted by aliasing occur in Fig. 3a, resulting in a maximal power for the scalogram

which is much greater than 1. Figures 3b, 3c and 3d present the weighted scalogram corrected by the SNEZ. In Fig.10

3b the SNEZ is computed with ∆tτ,a = ∆tGτ,a . We observe that it does a good job at rejecting the areas where aliasing

occur, although it is desirable that the black areas peak at higher scales. In Fig. 3c, the SNEZ is computed with

∆tτ,a = ∆tHτ,a . We observe that most of the aliasing-related areas are rejected, although we wish wider black areas.

Finally, the SNEZ computed with ∆tτ,a = max{∆tGτ,a ,∆tHτ,a} is drawn on Fig. 3d and we observe that it does a very

satisfactory job at rejecting the areas where aliasing occur.15

The SNEZ is applied to all the analysis tools defined above. When smoothing is to be applied, it is performed on

the areas outside of the SNEZ, since the scalogram is not computed in the SNEZ. In the neighborhood of the SNEZ,

adjustments of the smoothing procedure are therefore necessary, as explained in appendix D.
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Figure 3. Weigthed (unsmoothed) scalogram of the time series presented on Fig. 2a. (a) No correction for aliasing. (b) Corrected with

∆tτ,a = ∆tGτ,a . (c) Corrected with ∆tτ,a = ∆tHτ,a . (d) Corrected with ∆tτ,a = max{∆tGτ,a ,∆tHτ,a}.
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3.9 From the scale to the period

Scale to period conversion is performed in the continuous limit, with Eq. (18). The first case of Eq. (18), with

c(a) ∼ 1/a, corresponds to estimators of the amplitude, and is then used for scale to period conversion with the

amplitude scalogram (all the formulas of Sect. 3.5) and for the weighted smoothed scalogram, Eq. (45). The second

case of Eq. (18), with c(a)∼ 1/
√

a, is used for scale to period conversion with the unweighted scalogram, that is the5

formulas appearing in Sect. 3.2, 3.3 and 3.4.

3.10 Refining the Shannon-Nyquist exclusion zone

As illustrated on Fig. 4, the Shannon-Nyquist exclusion zone may not to be sufficient to avoid all the patches

due to aliasing, because of the correlations between neighboring scales in the scalogram. We therefore extend the

Shannon-Nyquist exclusion zone by considering the continuous limit case for the simple periodic signal x(t) =10

exp(i2πt/TSNEZ(τ)), where TSNEZ(τ) is the period at the border of the SNEZ, determined by Eq. (54) and (18).

Its scalogram is given in Eq. (17). In order to make the correspondence with all the above formulas, three cases are

considered:

1. c(a)∼ 1/a: In this case, we have |S(τ,a)|2 ∼ exp(−ω2
0 (2πa/TSNEZ(τ)−1)2), and the standard deviation for the

scale is then σa,1(τ) = TSNEZ(τ)/2
√

2πω0. The border of the extended Shannon-Nyquist exclusion zone at time15

τ is therefore at scale aSNEZ(τ) + βσa,1(τ), where β is a coefficient estimating the half support of Gaussian

shaped functions (it is defined in Sect. 3.7).

2. c(a) ∼ 1/a and work with |S(τ,a)|: In this case, we have |S(τ,a)| ∼ exp(−ω2
0 (2πa/TSNEZ(τ)− 1)2/2), and the

standard deviation for the scale is then σa,2(τ) = TSNEZ(τ)/2πω0. The border of the extended Shannon-Nyquist

exclusion zone at time τ is therefore at scale aSNEZ(τ)+ βσa,2(τ).20

3. c(a)∼ 1/
√

a: In this case, we have |S(τ,a)|2 ∼ aexp(−ω2
0 (2πa/TSNEZ(τ)−1)2). We know from Eq. (18) that the

scalogram is maximum at the scale amax(τ) = TSNEZ(τ)(ω0 +
√

ω2
0 + 2)/4πω0. The pseudo-standard deviation

is computed such that

aexp(−ω2
0 (2πa/TSNEZ(τ)− 1)2) decreases from its maximum by the same percentage as in case 1, namely,

βσa,3(τ) is equal to the largest of the two solutions of25

aexp(−ω2
0 (2πa/TSNEZ(τ)−1)2) = amax exp(−ω2

0 (2πamax(τ)/TSNEZ(τ)−1)2)exp(−β 2/2),

in which the unknown is a. The border of the extended Shannon-Nyquist exclusion zone at time τ is therefore

at scale a = aSNEZ(τ)+ βσa,3(τ).

Case 1 is used with formulas giving the squared amplitude Ê2
τ,a in Sect. 3.5 and with the weighted smoothed scalogram,

Eq. (45). The (unsquared) amplitude Êτ,a can also be of interest, and case 2 is therefore used. Case 3 is used with30

formulas arising in Sect. 3.2, 3.3 and 3.4. Finally, note that the refinement of the SNEZ is performed after the
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Figure 4. Scalogram of the time series |X〉 = sin(2π|t〉/10), where |t〉 has a piecewise constant time step. From t = 0 to t = 200, ∆t = 4.

From t = 200 to t = 400, ∆t = 3. From t = 400 to t = 600, ∆t = 2. (a) Weighted (unsmoothed) scalogram. The black area is the SNEZ. (b)

Same as (a) with the refinement of the SNEZ, which is the shaded area on the top of the SNEZ. (c) Amplitude scalogram (unsmoothed).

The black area is the SNEZ. (d) Same as (c) with the refinement of the SNEZ, which is the shaded area on the top of the SNEZ. In

the 4 panels, the bounds of the color scale are the extrema of the scalogram over the non-shaded area. Thanks to the refinement of the

SNEZ, the upper bound of the color scale is close to 1, which is the value of the (squared) amplitude of the signal |X〉.

smoothing procedure, because an extension of the SNEZ may result from the smoothing, as explained in appendix

D.
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3.11 Discretizing τ and a

With regularly sampled data, the discretized variable τ is usually equal to |t〉, like in (Torrence and Compo, 1998),

or a subset of |t〉 with regularly spaced elements. For irregularly spaced time series, we opt for the same type of grid

as in the regularly sampled case, i.e. a linear regular grid, namely

τk = τ0 + k∆τ, k ∈ {0, ...,K}, with τ0 ≥ t1 and τK ≤ tN . (55)5

The scales are commonly discretized as fractional powers of two (Torrence and Compo, 1998), namely

a j = amin2 jδ j, j = 0, ...,J, (56)

where

J = log2(amax/amin)/δ j. (57)

amin is the minimum over τ of aSNEZ (defined in Eq. (54)), and amax is defined in Eq. (48). Discretization as a power10

law comes from the geometry of the wavelet transform, and is justified in appendix C.

The integrals in Eq. (32), (44) and (45) are discretized with the rectangle method. In particular, the discretized

integrals from Eq. (32) and (45) allows to write these formulas as finite-size matrices. To this end, we apply a

Gram-Schmidt orthonormalization to the orthogonal projections, like in Eq. (I,61). This gives

||Psmoothed(τ,a)|X〉||2 = 〈X |M2τ,aM′2τ,a |X〉, (58)15

which is the analogue of Eq. (I,62). M2τ,a is a matrix of size (N,2ncol(τ,a)), ncol(τ,a) >= 1, where ncol is a non-trivial

function depending on the scale and on the closeness of (τ,a) with the SNEZ and with edges of the time-frequency

plane.

4 Significance testing with the scalogram

4.1 Hypothesis testing20

We test for the presence of periodic components, locally in the time-frequency plane. Significance testing is mathe-

matically expressed as a hypothesis testing. Taking our model, Eq. (22), the null hypothesis is

H0 : Aτ,a = Bτ,a = 0. (59)

Therefore, |X〉= |Trend〉+ |Noise〉. The alternative hypothesis is

H1 : Aτ,a and Bτ,a are not both zero. (60)25

The decision of accepting or rejecting the null hypothesis is based on the scalogram (Eq. (45)), independently for

each couple (τ,a) (this is called pointwise testing). Concretely, for each couple (τ,a), we compute the distribution
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of the scalogram under the null hypothesis, and then see if the data scalogram at (τ,a) is above or below a given

percentile of that distribution. The percentile is called level of confidence. If the data scalogram is above the X th

percentile of the reference distribution, we reject the null hypothesis with X % of confidence. The level of significance

is equal to (100−X) %, e.g. a 95 % confidence level is equivalent to a 5 % significance level.

To perform significance testing, we thus need5

1. to estimate the parameters of the process under the null hypothesis. This is studied in Sect. 5.2 of paper I.

2. to estimate the distribution of the scalogram under the null hypothesis. This is studied in Sect. 4.2 below.

Finally, we mention that, for regularly sampled time series, the pointwise significance test can be supplemented

with an areawise significance test, which takes into account the correlations between neighboring points in the time-

frequency plane. This is introduced in (Maraun and Kurths, 2004) and studied in detail in (Maraun et al., 2007).10

Applying this method to irregularly sampled series is way beyond the scope of this work, since the correlations

between neighboring points in the time-frequency plane are highly irregular.

4.2 Estimation of the distribution of the scalogram under the null hypothesis

The results obtained for the periodogram in Sect. 5.3 of paper I are valid for the scalogram, with minor changes that

we detail below.15

1. Monte-Carlo approach: The same procedure as in paper I is applied to the (weighted) smoothed scalogram,

Eq. (32) or (45). We can thus estimate the confidence levels for the (weighted) smoothed scalogram taking into

account the uncertainty on the parameters of the background noise.

2. Analytical approach (with a unique set of CARMA parameters):

– Theorem 1 of paper I can be applied to the (weighted) smoothed scalogram, as follows.20

Theorem 1. The (weighted) smoothed scalogram, defined in Eq. (58), under the null hypothesis (59), is8

||Psmoothed(τ,a)|X〉||2 d=
2ncol(τ,a)

∑
k=1

λk(τ,a)χ2
1 , (61)

where |X〉 = ∑m
k=0 γk|tk〉+ K|Z〉 and K is the CARMA matrix defined in Eq. (I,15) or (I,34). The χ2

1

distributions are iid, and λ1(τ,a), ..., λ2ncol(τ,a)(τ,a) are the eigenvalues of M′2τ,a
KK′M2τ,a and are non-25

negative. Matrix M2τ,a is defined in Eq. (58).

8The symbol
d= means “is equal in distribution”.

20

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2017-27
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 4 July 2017
c© Author(s) 2017. CC BY 4.0 License.



– The pseudo-wavelet power spectrum, ŴPS, is the analogue of the pseudo-spectrum defined in Eq. (I,85).

It is defined as the expected value of the (weighted) smoothed scalogram distribution, namely

ŴPS(τ,a) =
2ncol(τ,a)

∑
k=1

λk(τ,a) = tr(M′2τ,aKK′M2τ,a). (62)

– For a Gaussian white noise background with variance σ2, the unweighted pseudo-wavelet power spectrum

is flat, and is equal to 2σ2, for all (τ,a). Moreover, if the scalogram is not smoothed, it is exactly chi-5

square-distributed with 2 degrees of freedom:

||(Psp{t0,t1,...,tm,Gτ,aca,Gτ,asa}−Psp{t0,t1,...,tm})σ |Z〉||2 d= σ2χ2
2 , (63)

where |Z〉 is a standard Gaussian white noise.

– The variance of the distribution of the (weighted) smoothed scalogram at (τ,a) is equal to 2||M′2τ,a
KK′M2τ,a ||2F ,

where || · ||F is the Frobenius norm.10

– We approximate the linear combination of the independent chi-square distributions, appearing in Eq.

(61), by a gamma-polynomial distribution conserving its first d moments, based on the theory developed

in (Provost et al., 2009). The formulas are given in Sect. 5.3.3 of paper I.

We observe, however, that the convergence of the percentiles (as the number of conserved moments grows)

strongly depends on the smoothing coefficient γ, defined in Eq. (32) and (45). As a general rule, the larger is15

γ, the faster is the convergence. Moreover, it turns out that the gamma-polynomial approximation becomes

numerically unstable at large numbers of conserved moments, because the matrix in Eq. (I,93) becomes

singular. Consequently, for relatively small values of γ, convergence cannot be numerically guaranteed.

This is illustrated on Fig. 5. In such cases, a simple 2-moment approximation is therefore a reasonable

choice since it is always numerically stable, it is much quicker than with higher numbers of conserved20

moments from a computational point of view, and it provides a satisfactory approximation.

3. A comparison between the computing times of the Monte-Carlo approach and the analytical approach is

presented in appendix G.

5 Filtering with the amplitude scalogram

5.1 Band filtering25

From Sect. 3.5.3, Eq. (42) gives Âτ,a and B̂τ,a. We can therefore reconstruct the signal Âτ,a|ca〉+ B̂τ,a|sa〉 over the

whole time-scale plane, i.e. for all (τ,a). Band filtering is performed by averaging the reconstructed signal between

scales a jmin
and a jmax , namely

Xfilt(τ) =
1

jmax− jmin + 1

jmax

∑
j= jmin

Âτ,a j |ca j〉+ B̂τ,a j |sa j〉, (64)
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Figure 5. Analytical confidence levels in function of the number of conserved moments, at six particular couples (τ,a), for the scalogram

of the time series presented in Sect. 7. Parameter γ is equal to 0.5. Left panel: 95th percentile. Right panel: 99.9th percentile. Slow

convergence as well as numerical instabilites (spurious peaks) at high numbers of conserved moments are observed. Convergence cannot

therefore be numerically guaranted.

where the discretized scale is defined in Eq. (56). Such filtering is a generalization of the scale-averaged wavelet power

of (Torrence and Compo, 1998) which deals with trendless regularly sampled signals. Note that we use the formulas

for which there is no smoothing. Indeed, the smoothing procedure in Eq. (44) does not give access to Âτ,a and B̂τ,a

(only the sum of their squared values is available). An example of band filtering is shown in Fig. 9 and 10.

5.2 Ridge filtering5

Consider a signal |X〉= E cos(ω|t〉+φ). We can easily reconstruct the signal from the estimated amplitudes Âτ,a and

B̂τ,a, given by Eq. (42), taken at the maximum of the scalogram, in this case at a = 1/ω. More generally, we can

reconstruct more complex signals relying on the theory of the amplitude ridges, developed for the continuous case

(Sect. 2.7), and which can approximately be applied to irregularly spaced time series. An example of ridge filtering

is shown in Fig. 9 and 10.10
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6 The global scalogram

Analogously to the global wavelet spectrum of (Torrence and Compo, 1998) for trendless regularly sampled time series,

we define here the global scalogram as the scalogram averaged over time. Technically, it is nothing but the smoothed

scalogram (Eq. (32), (44) or (45)) with integration over the whole interval of the analysis time τ. We can write the

discretized global scalogram under a similar matrix form as in Eq. (58), and find the confidence levels according to5

Sect. 4. Compared to the periodogram defined in paper I, which has a fixed bandwidth, the global scalogram has a

varying bandwidth with the frequency. From Fig. C1 of appendix C, we deduce that the global scalogram exhibits

a frequency resolution that gets better when the frequency decreases. Examples of global scalograms are given in

Sect. 7.

7 Application on paleoceanographic data10

7.1 Preliminary analysis

The time series we use to illustrate the theoretical results is the benthic foraminiferal δ 18O record from (Jian et al.,

2003) that holds 608 data points with distinct ages and covers the last 6 million years. The choice of a CARMA(1,0)

process as the background stationary noise, as well as the choice of m = 7 for the degree of the polynomial trend, are

justified in Sect. 9 of paper I, in which the same data set is used as an example of frequency analysis. The time series,15

its trend and its time step are drawn on Fig. 6. We remind that the time series is not detrended before computing

the scalogram of the data, but it is detrended before estimating the confidence levels.

7.2 Time-frequency analysis

The weighted smoothed scalogram (Sect. 3.6) and its 95 % analytical and MCMC confidence levels are presented on

Fig. 7 with parameter ω0 = 5.5, and on Fig. 8 with parameter ω0 = 15. As explained in Sect. 2, increasing ω0 results20

in a better frequency resolution and a worse time resolution. In our example, the scalogram with ω0 = 15 exhibits

more clearly the period band around 40 kyr and the changes in amplitude along that band.

The parameters are: γ = 0.5 (smoothing coefficient), 2 is the number of conserved moments in the gamma-polynomial

approximation (see the discussion in Sect. 4.2), a fixed-length smoothing per scale (see appendix D), β = 3 (half-

support of a standard Gaussian function exp(−x2/2)), and δ j = 0.05 (coefficient for the scale resolution).25

7.3 Filtering

As explained in Sect. 5, band and ridge filtering are performed on the unsmoothed amplitude scalogram. This is

illustrated on Fig. 9, with a filtering band in the interval [35,45] kyr and with the ridges. From the whole set of the

ridges, we select those in the band [35,45] kyr, in order to make a comparison with the band filtering. Band and ridge

filtered signals are shown in Fig. 10. We can see that the amplitude modulations in Fig. 10a and 10b are consistent.30
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Figure 6. (a) The time series and its 7th degree polynomial trend. (b) The age step, [tk− tk−1] ∀k ∈ 2, ...,N, and its distribution.

Compared to band filtering, the ridge filtering method has the advantage of representing the signal for which the

amplitude scalogram is locally maximal, and also allows to reconstruct the time-varying amplitude of the filtered

signal (in red on Fig. 10b). The drawback is that it rarely delivers a continuous reconstruction with climate data.

8 WAVEPAL Python package

WAVEPAL is a package, written in Python 2.X, that performs frequency and time-frequency analyses of irregularly5

sampled time series, significance testing against a stationary Gaussian CARMA(p,q) process, and filtering. Frequency

analysis is based on the theory developed in paper I, and time-frequency analysis relies on the theory developed in

this article. It is available at https://github.com/guillaumelenoir/WAVEPAL.

9 Conclusions

We defined the scalogram as an extension of the generalized Lomb-Scargle periodgram developed in paper I. This10

analysis tool is well-suited for irregularly sampled time series which can be modeled as a locally periodic component

in the time-frequency plane, plus a polynomial trend, plus a Gaussian CARMA stochastic process. In the particular

case of trendless regularly sampled times series, we shown that the unsmoothed scalogram gives the same results as

with the traditional algorithms such as in (Torrence and Compo, 1998). A smoothing procedure, by averaging over

neighboring points in time, was then applied to the scalogram in order to reduce its variance. Besides, we derived15

estimators of the amplitude of the locally periodic component, based on the general results of paper I, and proposed

an approximate proportionality between the scalogram and the squared amplitude. The latter result is at the basis of

the weighted smoothed scalogram, which is the analysis tool that we recommend for most time-frequency analyses.

We then shown that local aliasing issues may occur in the analysis tools previously derived, implying the delimitation
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Figure 7. Weighted smoothed scalogram (left) and its global scalogram (right) with ω0 = 5.5. The 95 % analytical confidence levels

(green) and 95 % MCMC confidence levels (magenta), against a red noise background, are also drawn. Note that the green and magenta

contours are almost superposed. The two lateral shaded areas are the half-cones of influence, the bottom black area is the SNEZ, and

the shaded area above the SNEZ is the refinement of the SNEZ. There are also two lateral black areas, where the scalogram is not

computed, because of the fixed-length smoothing per scale. The bounds of the color scale are the extrema of the scalogram over the

non-shaded area. As we work with the weighted scalogram, the power is an estimation of the local squared amplitude. Dashed lines at

usual paleoclimate periods are also drawn.

of a forbidden area for the analyses, called the Shannon-Nyquist exclusion zone. Moreover, a test of significance for

the scalogram was designed, similarly to its counterpart for the frequency analysis developed in paper I. Finally, the

classical filtering procedures, namely band and ridge filtering, were made available for use with our operator of the

estimated amplitude.

Code availability. The Python code generating the figures of this article is available in a supplementary material.5

Appendix A: Fourier analysis of functions

L2(R) is the space of measurable functions on R with finite energy:

|| f ||2L2 =
+∞∫

−∞

dt| f (t)|2 < ∞. (A1)
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Figure 8. Weighted smoothed scalogram (left) and its global scalogram (right) with ω0 = 15. The 95 % analytical confidence levels

(green) and 95 % MCMC confidence levels (magenta), against a red noise background, are also drawn. Note that the green and magenta

contours are almost superposed.

This defines the squared norm for such functions, that we denote simply by || f ||2 in Sect. 2. We provide the L2 space

with the usual inner product:

〈 f |g〉L2 =
+∞∫

−∞

dt f (t)g(t), (A2)

which makes it a Hilbert space. 〈 f |g〉L2 is denoted by 〈 f |g〉 in Sect. 2.

The Fourier transform of f ∈ L2(R) is defined by5

f̂ (ω) =
1√
2π

+∞∫

−∞

dt f (t)exp(−iωt), (A3)

which is the L2-inner product between f (t) and exp(iωt). The inverse Fourier transform is

f (t) =
1√
2π

+∞∫

−∞

dω f̂ (ω)exp(iωt). (A4)

Some properties of the Fourier transform are listed below:

– Parseval-Plancherel identities: 〈 f |g〉= 〈 f̂ | ĝ〉 and || f ||2 = || f̂ ||2.10
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– Convolution theorem: [ f ?g]̂ (ω) =
√

2π f̂ (ω)ĝ(ω), where the convolution product between f and g is ( f ?g)(t) =
∫ +∞
−∞ dt ′ f (t− t ′)g(t ′).

– Translation-modulation: The Fourier transform of f (t−b) is exp(−iωb) f̂ (ω).

– Dilation: The Fourier transform of f (at), a 6= 0, is 1
|a| f̂ (ω/a).

Appendix B: Heisenberg uncertainty for the Morlet wavelet5

Heisenberg uncertainty theorem states that the temporal variance and the frequency variance of a function f ∈L2(R)

satisfy

σ2
t σ2

ω ≥
1
4
, (B1)

where

σ2
t =

1√
2π|| f ||2

+∞∫

−∞

dt(t−u)2| f (t)|2, (B2)10

and

σ2
ω =

1√
2π|| f ||2

+∞∫

−∞

dt(ω−ξ )2| f̂ (ω)|2. (B3)

µ and ξ are the average time and average frequency and are defined with the same densities as for the variances.

For the Morlet wavelet, the densities are |ψ]
a(t)|2 (from Eq. (13)) and |ψ̂]

a(ω)|2 (from Eq. (16)), up to a normalizing

multiplicative factor. As they are Gaussian functions, their variances are trivial, and we have15

σ2
t σ2

ω =
ω2

0 a2

2
1

2ω2
0 a2 =

1
4
. (B4)

This is equal to the lower bound of Heisenberg inequality, as expected for Gaussian functions. See (Mallat, 2009, p.

43) for additional details. It is in that sense that the Morlet wavelet is said to be ideally localized.

Appendix C: Heisenberg boxes and scale discretization

C1 Time-frequency resolution and Heisenberg boxes20

We saw in appendix B that the standard deviations of the continuous-time density |ψ]
a(t)|2 and continuous-frequency

density |ψ̂]
a(ω)|2 are σt = ω0a/

√
2 and σω = 1/

√
2ω0a respectively. Moreover, the center angular frequency of |ψ̂]

a(ω)|2

is ω = 1/a. With all these coefficients and Eq. (3) and (5), we can draw rectangles, called Heisenberg boxes (Mallat,

2009, p. 109), in the time-frequency plane indicating the energy spread around each couple (τ,ω), or equivalently,

the time-frequency resolution at each couple (τ,ω). This is illustrated in Fig. C1. Note that their area is equal to25

σtσω = 1/2 and is therefore constant.
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Figure C1. Heisenberg boxes for the Morlet wavelet, with α = ω0/
√

2 and β = 1/
√

2ω0.

C2 Scale discretization

Scale discretization is naturally based on the geometry of the Heisenberg boxes. We can, for example, require that

the frequency component of the center of mass of the box corresponding to scale a j be at the frequency of the border

of the box corresponding to scale a j+1. This is illustrated on Fig. C2. We obtain

1
a j

=
1

a j+1
+

β
2a j+1

, (C1)5

where β is defined in Fig. C1, giving

a j+1 =
(

2 + β
2

)
a j, (C2)

and by recurrence,

a j+1 =
(

2 + β
2

) j

a0. (C3)

Multiplying β by a positive factor, γ, allows to control the density of the discretized scales. With variable change10

δ j = log2[(2 + βγ)/2], we obtain

a j+1 = 2 jδ ja0, δ j > 0, ∀ j ∈ {0, ...,J}. (C4)
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Figure C2. Example of rule for the discretization of scales taking into account the geometry of the Heisenberg boxes. β = 1/

√
2ω0 > 0.

Appendix D: Smoothing the (amplitude) scalogram: Technical details

In the formulas of the smoothed (amplitude) scalogram, Eq. (32), (44) and (45), integration is in principle performed

over the interval [τ − γω0a,τ + γω0a]. When this interval intersects the edges of the time-frequency plane or the

SNEZ, we are no longer able to integrate over the full interval. Two choices are then possible:

1. Keep the length of integration equal to 2γω0a, and therefore exclude from the analysis some areas of the time-5

frequency plane. This results in two excluded zones at the time borders of the scalogram and in an extension

of the SNEZ.

2. Shorten the interval of integration in order to not exclude from the analysis any extra region of the time-

frequency plane.

Both options are available in WAVEPAL and we recommend the first one, in order to keep a consistent degree of10

smoothing at each point (τ,a) in the time-scale plane.

Appendix E: On Foster formulas for the Morlet-CWT of irregularly sampled time series

E1 Introduction

In this appendix, we derive and comment about the formulas published in (Foster, 1996c), and based on developments

published in (Foster, 1996a) and (Foster, 1996b). Foster theory restricts to the case of the unsmoothed scalogram15

applied to signals with an additive Gaussian white noise and a piecewise trend for which the shape is the envelope of

the Morlet wavelet. It also defines something similar to our amplitude scalogram and generalizes the F-periodogram

of paper I. We show that some of its formulas can be deduced from our general theory9. Foster formulas are

available for use in a Fortran code provided by the American Association of Variable Star Observers (AAVSO), see

(https://www.aavso.org/sites/default/files/software/wwz.tar.gz).20

9See (Foster, 1996c) for the original derivation of the formulas, which is rather different from our approach.
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E2 Foster approximation and weighted inner products

Let us start with the approximation made in (Foster, 1996b) and used in (Foster, 1996c). Define U as equal to a full

rank real matrix, whose columns are the vectors generating the vector space on which we project the data vector

|X〉, the latter belonging to RN . Define G as equal to a real diagonal square matrix of size N with positive elements.

Foster approximation (Foster, 1996b, Eq. (7.9)) writes105

U ′G2U ≈ tr(G2)
tr(G)

U ′GU. (E1)

Note that, when U is a 2-column matrix holding a cosine vector and a sine vector, the above approximation can also

be obtained from Eq. (I,119). The orthogonal projection on the span of GU thus becomes

Psp{GU} = GU(U ′G2U)−1U ′G

≈ tr(G)
tr(G2)

GU(U ′GU)−1U ′G, (E2)10

and, for any pair of vectors |Y 〉 and |W 〉 in RN , we have

〈Y |Psp{GU}|W 〉 ≈ Neff
〈Y |GU
tr(G)

(U ′GU)−1tr(G)
U ′G|W 〉

tr(G)
, (E3)

where Neff = tr(G)2

tr(G2) is defined in (Foster, 1996c, Eq. (7.7)) and called the effective number of data points. We can

actually rewrite the right-hand side of Eq. (E3) as Neff〈Y |Psp{U}|W 〉Weighted, where the weighted inner product is

defined by:15

〈Y |W 〉Weighted =
〈Y |G|W 〉

tr(G)
, (E4)

for any |Y 〉 and |W 〉 in RN . 〈 · | · 〉Weighted satisfies to the requirements of an inner product since the elements of G

are positive, see (Brockwell and Davis, 1991, p. 43). Foster theory is developed in a vector space provided with this

weighted inner product.

E3 WWT20

Now, we derive Foster scalogram from our theory. The diagonal elements of the weight matrix G are (Foster, 1996c,

Eq. (5-3)):

Gkkτ,ω = exp(−cω2(tk− τ)2). (E5)

Correspondence with our weight matrix, defined in Eq. (25), is performed with the variable changes ω = 1/a and

c = 1/2ω2
0 . Next, consider the formula of the unsmoothed scalogram, Eq. (31), with a = 1/ω, and transformed to25

accommodate for a trend given by |Gτ,ω t0〉. This results in

||Psp{Gτ,ω t0,Gτ,ω cω ,Gτ,ω sω}|X〉||
2−||Psp{Gτ,ω t0}|X〉||2. (E6)

10In (Foster, 1996b), the author works with tensor notations, so that the equivalence is not direct.
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We then make use of the approximation of Eq. (E2) with U = [|t0〉 |cω〉 |sω〉] for the first projection and U = |t0〉 for

the second projection, resulting in the following formula:

Neff

(
||Psp{t0,cω ,sω}|X〉||

2
Weighted−||Psp{t0}|X〉||2Weighted

)
, (E7)

for which we now work in a vector space provided with the weighted inner product. If |X〉 is a zero-mean Gaussian

white noise, formula (E6) follows exactly a chi-square distribution with 2 degrees of freedom multiplied by the5

variance of the white noise, namely σ2χ2
2 . Consequently, under the null hypothesis that the process is a Gaussian

white noise, the following expression

WWT =
Neff

2σ2

(
||Psp{t0,cω ,sω}|X〉||

2
Weighted−||Psp{t0}|X〉||2Weighted

)
, (E8)

approximately follows a chi-square distribution with 2 degrees of freedom and expected value 1. Formula (E8) is

rigorously the same11 as the weighted wavelet transform (WWT) of (Foster, 1996c), in which the author estimates10

σ2 as

σ̂2 =
Neff

Neff−1
(
〈X |X 〉Weighted−〈 t0 |X 〉2Weighted

)
. (E9)

Significance testing against a Gaussian white noise can be therefore be performed with the WWT.

Below, we comment on the WWT and make a comparison with our formulas.

– The WWT is built on the assumption that the time series holds a Gaussian-shaped trend centered at the15

probed translation time τ, the support of which varying with the probed frequency. This is equivalent to a

constant trend in the vector space provided with the weighted inner product. This contrasts with our choice

for the trend, Eq. (23), which is independent of the analysis function.

– The WWT under the null hypothesis is only approximately chi-square-distributed, compared to formula (E6)

which is exactly chi-squared-distributed.20

– The estimation of the variance of the white noise, σ̂2, which is part of the WWT formula, depends on the

sampling. However, two samples of a white noise are uncorrelated whatever is the time step separating them,

and the estimation of its variance should thus be independent of the sampling, like in Sect. 5.2.2 of paper I.

– To our point of view, working with weighted inner products, approximations like in Eq. (E1), and complicated

tensor notations (see (Foster, 1996b)) does not bring a simple and unified view of the problematic.25

11Note that Eq. (5-10) of (Foster, 1996c), which is a prerequisite for the formula of the WWT, is probably erroneous, making unclear

the correspondence with our Eq. (E8). However, the formula given here in Eq. (E8) is strictly the same as the WWT encoded in

(https://www.aavso.org/sites/default/files/software/wwz.tar.gz).
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E4 WWA

The weighted wavelet amplitude (WWA), defined in (Foster, 1996c, Eq. (5-14)), is similar to our amplitude scalogram

defined in Eq. (43). The former is obtained from the latter taking the trend to be |Gτ,ω t0〉, where Gτ,ω is defined in

Sect. E3. For practical applications, we note that computing the inverse of a matrix is needed for the computation of

the WWA (this is also the case for our amplitude scalogram). But Foster theory lacks of an in-depth consideration5

of aliasing issues, and the WWA at some points of the time-frequency plane may be numerically infinite due to the

occurrence of singular matrices caused by aliasing.

E5 WWZ

Under the null hypothesis that the data |X〉 is a Gaussian white noise, its squared norm in the vector space provided

with the weighted inner product is approximately chi-square-distributed with Neff degrees of freedom, as this follows10

from the 2-moments approximation of Sect. 5.3.3 of paper I, from which formula (I,91) is applied to matrix G.

Consequently, under the null hypothesis, the following formula

(Neff−3)
[
||Psp{t0,cω ,sω}|X〉||2Weighted−||Psp{t0}|X〉||2Weighted

]

2
[
||X ||2Weighted−||Psp{t0,cω ,sω}|X〉||2Weighted

] , (E10)

is approximately equal to the Fisher-Snedecor distribution with 2 and Neff− 3 degrees of freedom. Formula (E10)

is defined in (Foster, 1996c, Eq. (5-12)) and called the weighted wavelet Z-transform (WWZ). It generalizes the15

F-periodogram that we defined in Sect. 5.4 of paper I.

Appendix F: Warning about interpolating the time series

This appendix compares the scalograms and their confidence levels in the case of interpolated and non-interpolated

time series. The time series we consider is the δ 18O signal from the GISP2 ice core (Grootes and Stuiver, 1997),

for which the first 11 kyr are removed, in order to facilitate the detrending procedure. The time series is drawn in20

Fig. F1b and F1c, and its time step is given in Fig. F1a. The interpolated time series is built on a time grid with

∆t = 30 yr (this is is the smallest time step of the raw time series), see Fig. F1b, or ∆t = 300 yr, see Fig. F1c. The

(unsmoothed) scalograms with ω0 = 15 of the raw and interpolated time series are shown in Fig. F2, jointly with the

95 % analytical confidence levels against a red noise. We observe that confidence testing is strongly dependent on the

interpolation procedure. This is because the parameters of the red noise are badly estimated when the time series is25

interpolated. Consequently, in general, we cannot rely on interpolated time series to perform significance testing. In

particular, we draw the attention on the geological stacks, such as in (Lisiecki and Raymo, 2005) or (Huybers, 2007),

which are composed of multiple interpolated time series and averaged together. Significance testing or analysis of

the background noise for such time series may therefore be strongly biased.

Finally, we observe that, in this example, the power of scalogram the data is weakly affected by the interpolation.30
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Figure F1. δ 18O signal from the GISP2 ice core (Grootes and Stuiver, 1997), for which the first 11 kyr are removed. (a) Time step.

(b) The raw (red dots) and interpolated (blue line) time series with ∆t = 30 yr. (c) The raw (red dots) and interpolated (blue line) time

series with ∆t = 300 yr.

Appendix G: Computing time: Analytical versus Monte-Carlo significance levels

A comparison between the computing times, for generating the scalogram, with the analytical and with the MCMC

confidence levels, based on the hypothesis of a red noise background, is presented on Fig. G1. The computing

times are expressed in function of the number of data points, which are disposed on a regular time grid, in order

to make a meaningful comparison. Confidence levels with the analytical approach are estimated with a 2-moment5

approximation. The number of samples for the MCMC approach is 10000 for the 95th percentiles and 100000 for the

99th percentiles. The smoothing coefficient is γ = 0.5, and the other parameters are default parameters of WAVEPAL.

All the runs were performed on the same computer12.
12CPU type: SandyBridge 2.3 GHz. RAM: 64GB.
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Figure F2. Scalogram of the time series presented in Fig. F1 and the 95 % analytical confidence levels against a red noise. (a) Raw

time series. (b) Interpolated time series with ∆t = 30 yr. (c) Interpolated time series with ∆t = 300 yr.
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Figure G1. Computing times for generating the scalogram with analytical (blue) and MCMC (green) confidence levels, in function of

the number of data points (disposed on a regular time grid). Log-log scale. Left: 95th percentiles. Right: 99th percentiles.

With this parametrization, and within this interval of the number of data points, we see that the analytical approach

is faster than the MCMC approach. The analytical approach delivers computing times of the same order of magnitude

whatever is the percentile (the two blue curves in Fig. G1a and G1b are in the same order of magnitude), unlike the

MCMC approach, which must require more samples as the level of confidence increases, in order to keep a sufficient

accuracy. The difference between both computing times therefore increases as the level of confidence increases.5

Note, however, that the 2-moment approximation, for the estimation of the analytical confidence levels, is very fast

from a computational point of view. Increasing the number of conserved moments may considerably increase the

computational cost associated to the analytical approach. But this configuration is rarely used in practice because

it often results in numerical instabilities and badly estimated percentiles, as explained in Sect. 4.2.
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